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ABSTRACT
The European ‘Floods Directive’ 2007/60/EC focuses on the development
of flood risk maps and management plans on the basis of the most
appropriate and advanced tools. This pushed a paradigm shift for moving
to sustainable development through processes of stakeholder
engagement to improve the efficiency and transparency of decision
processes. In this context, this research project developed a free and
open-source GIS software, called FloodRisk, to operatively support
stakeholders in their compliance with risk map delineation and the
management of current and future flood risk based on their needs for
multi-purpose applications. In this paper, a high-resolution impact
assessment framework based on 2D inundation modelling with different
return periods was used, as input, within the FloodRisk model to
reconstruct the socio-economic damages based on a case study showing
how structural and non-structural measures can significantly decrease the
cost of floods for households. The sensitivity of the FloodRisk model was
also examined and it was found to be highly dependent on the selection
of damage functions and the economic values of the exposed assets.
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Introduction

In recent decades, flood damage throughout Europe has increased due to climatic changes, popula-
tion growth and urban development in flood-prone areas (Barredo 2009; Munich RE 2015). At the
same time, risk-prone areas such as deltas and flood plains continue to attract human development,
thereby increasing the vulnerability of these places (Kummu et al. 2011). Therefore, flood risk man-
agement (FRM) efforts must deal with an observed increase in flood damage combined with the
expectation that flood consequences will continue to rise due to changes in flood meteorological
drivers, land-use patterns and socio-economic development (IPCC 2007; te Linde et al. 2010). Past
management has been dominated by technical flood prevention measures, despite losses in ecosys-
tem function, and flood losses have continued to increase, with the need for change becoming
increasingly apparent. Therefore, a new scientific approach that aims to increase resilience by man-
aging risk efficiently and adaptively is emerging. This approach considers the interplay between
hydrological and socio-economic factors and the calculation of the expected flood damage repre-
sents a fundamental piece of information for the overall flood-risk mitigation process (Domene-
ghetti et al. 2015). This new perspective is based on resilience and societal analysis and must reflect
the challenge of using sustainable development (SD) metrics, as well as the requirements for risk
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mitigation and adaptation strategies, in particular, considering the limited financial resources avail-
able. Whilst these requirements are welcome in light of the scientific achievements and recent
understanding of risk, they charge stakeholders with new duties and challenges that are not only dif-
ficult to handle, but for which scientific and technical development is still probably insufficient to
provide the necessary knowledge to support stakeholders’ FRM decisions (Albano et al. 2015a). In
addition to the potential of flood risk analysis for knowledge exchange across different scientific
communities and, hence, methodological improvements, there is a need for knowledge transfer
from science to practice. There is an emerging need for appropriate tools that provide information
about the consequences of adopting different courses of action, as well as the ability to do so in a
way that responds to the nature of the tasks with which stakeholders are faced.

The Floods Directive asks Member States to develop risk maps on the bases of the most appropri-
ate and advanced tools, provided that the economic effort required for their systematic implementa-
tion is reasonable. Moreover, risk maps must supply all the knowledge that is required to develop
flood risk management plans (FRMPs), in particular, allowing for a costs–benefits analysis of
proposed mitigation actions. In this context, we have developed a free and open-source GIS soft-
ware, called FloodRisk, that aims to support operatively diverse stakeholders in their compliance
with FRM (e.g. to manage current and future flood damages and risk according to different adapta-
tion mitigation actions, emergency service strategies, recovery processes and insurance premium
rate calculation, and to communicate flood risk worldwide), through a transparent and collaborative
approach. The FloodRisk tool, implemented as a QGIS plug-in, can be applied by different actors in
risk management for their specific aims (context-specific and applicable), and includes direct tangi-
ble and intangible cost types (comprehensive), accounts for structural and non-structural mitigation
strategies, can be used for analysis of future dynamics (consider risk dynamics), and promotes col-
laboration and communication through an open-source approach (transparent) (Figure 1).

After this brief introduction, this paper describes the motivations and main features of the pro-
posed FloodRisk software, explaining in detail the architecture, user interface, usability and portabil-
ity. Later, the FloodRisk methodological framework and engine workflow is described. Moreover, an
example application of assessing the economic damage and population affected by flooding on a
benchmarking case study (i.e. dataset was originally provided by Seda-Sanabria et al. (2013) for the
workshop on the benchmarking of risk analysis for dam breaks; the name and geographical location
of the case study town is not explicitly provided), accounting for structural and non-structural meas-
ures, is presented. A sensitivity analysis of the parameters of the proposed model is also performed.
Finally, a discussion of limitations and potential improvements of the presented risk analysis tool is
provided and an overall conclusion is presented.

The FloodRisk plug-in vision

The main objective of flood risk analysis models is to provide a basis and support for better decision-
making in selecting alternative risk mitigation options by providing informed and well-reasoned
arguments, hence contributing to the improvement of FRM processes. Current methods assessing
the costs of natural hazards, both related to damages and mitigation, employ a substantial difference
in their underlying approaches, as geographical, hydrological and social differences demand specific
approaches for different applications and in different countries. This obstructs the process of per-
forming robust, transparent, harmonized and comparable flood risk analysis. Indeed, the emerging
flood risk analysis approach should take into account that cost assessments are always purpose-
related and be based on the determination of the appropriate spatial scale and time horizon. Several
flood damage modelling methodologies have been developed for specific purposes and tailored to
characteristics of specific contexts [e.g. HAZUS-MH (FEMA 2003; Scawthorn 2006); FLEMO model
(Apel et al. 2009; Vorogushyn et al. 2012); Multi-Coloured Manual (Penning-Rowsell et al. 2005)].
The selection of flood risk software to be evaluated was based on the degree of reliability ensured
due to the fact that all of them were developed and applied by governments and academic
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institutions. The analysis of these models also highlights their limits in fulfilling knowledge require-
ments for a comprehensive FRM strategy, for example as regards emergency planning; important
information for the emergency phase (such as exposed people per building, vulnerability of evacua-
tion routes, etc.) is presently not supplied. The analysis of these methods/models shows criticalities
with regard to the full inclusion of structural and non-structural mitigation measures for cost–
benefit analysis and the transfer of these methods in terms of space and spatial scale, and also
regarding the achievement of transparent communication and collaborative decision-making. The
contributions by existing flood loss methods to the progress of flood consequence assessment are
undeniable. However, flood risk analysis is now viewed from a wider and more comprehensive per-
spective, one that can overcome the limitations of the above-cited models in situations where both
structural and non-structural measures must be considered and combined in the best possible way,
and must be attuned to the specific context concerned. Moreover, the scientific and engineering
community have limited or unrecognized access to computer codes to perform flood risk analysis.
Therefore, there is an emerging need to promote the development of applications that are open,
transparent, reliable, extensible and collaborative (Green et al. 2011). This approach could produce
benefits for the whole community: creating open systems – in addition to sharing data – promotes
transparency and accountability, and ensures that wide ranges of actors are able to participate in the
challenge of building resilience (Albano et al. 2017c). Stakeholder involvement and active participa-
tion can increase the legitimacy of risk processes, as well as public acceptance, commitment and sup-
port with respect to decision-making processes (Inam et al. 2017a, 2017b). Among the scientific
community, this type of activity can be labelled as ‘participatory research’, intended for adopting a
set of techniques that ‘are interactive and collaborative’ and reproducible, thus ‘providing a mean-
ingful research experience that both promotes learning and generates knowledge and research data
through a process of guided discovery’ (Mercer et al. 2008). Learning processes may have several fac-
ets, such as self-organization, transformability, adaptation as a response to perturbations, adaptive
management, the use of all kinds of knowledge and innovation (Folke et al. 2005; Folke 2006; Berkes
2007; IPCC 2007).

In this context, the proposed tool, called FloodRisk, (Figure 1) shows high modularity and flexi-
bility, allowing flood risk stakeholders, practitioners and scientists to scrutinize and contribute to
the methodologies/algorithms adopted through a community-based development process. The
source is published under free and open-source software licenses with end-user rights to analyze,
modify and redistribute for any purpose, increasing the chances of eventually correcting bugs,
improving the model and adapting it for specific purposes. It not only increases the possibility of
validating and testing the published source code, but it may also provide an important platform for
developers of proprietary software to increase the scientific validity of their results. In this way, the
owners of proprietary code can provide effective user support in a manner that is usually difficult
for open-source projects to deliver.

Moreover, it is important to mention that, despite the fact that some of the aforementioned flood
loss methods incorporate calculation philosophies similar to the ones implemented in the FloodRisk
model, implementation can vary significantly, since FloodRisk has a user-friendly and intuitive inter-
face and the capability of running calculations on any platform (Windows, Mac, Linux, etc.), as well
as extensibility, efficient testability and scientific operability. The choice of organizing the procedure
in modules seems promising in that it not only allows to assess different types of damage but also to
implement the procedure gradually, according to available human and financial resources.

The FloodRiskmodel has been developed as a plug-in of the free and open-source QGIS software,
following risk mapping approaches that could be more precise in a spatial sense, providing spatial
resolution adequate to the scope of the analysis and fully addressing the spatial distribution differen-
ces of both a territorial system and of a flood event, that can produce significant differences in its
potential damages. Indeed, the use of geospatial models through Geographic Information Systems
(GISs) is very useful in flood risk assessment, as GISs are ideal for managing heterogenic spatial
information, providing spatial analysis processing and simple and clear visualization of results (Sole
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et al. 2012). Finally, the interactive, dynamic and flexible nature of GIS technology, combined with
the immediacy with which information is presented by the map, can facilitate and speed up the pro-
cess of knowledge acquisition (Albano et al. 2015b). Maps can enhance recipients’ knowledge
resources, thereby facilitating informed discussion, as well as building capacity for more private pro-
tection. They can also provide a common visual basis for a two-way exchange about the local risk
situation (Kjellgren 2013). According to the Floods Directive, such maps represent the knowledge
base on which suitable measures as well as appropriate objectives for FRMPs must be selected and
designed, by considering both costs and benefits of alternatives and results from consultation with
all interested parties.

In the field of flood risk, several different types of free and open-source geospatial software have
been released [e.g. CAPRA-GIS (http://www.ecapra.org/); UNISDR GAR15 (De Bono 2015);
Delft3D suite DAM (http://oss.deltares.nl/web/delft3d)], most of them oriented to assessment of
flood hazard and not taking into consideration the quantitative assessment of consequences/losses.
Recently, some risk-based models have been developed as free and open geospatial software. For
example, InaSAFE (http://inasafe.org/) is a multi-risk platform, developed as a QGIS plug-in that
enables the assessment of several natural hazard scenarios for floods, earthquakes, volcanoes and
tsunamis, to underpin emergency planning, disaster preparedness and response activities (World
Bank 2014). For these aims, InaSAFE allows (at the time of writing) the quantitative estimation of
exposure elements due to a natural event (e.g. an assessment of the number of people affected). In
the FloodRisk plug-in, the vulnerability is effectively characterized to estimate potential direct eco-
nomic damages and loss of life in order to perform cost–benefit analyses addressing the objectives
and applications of a wide range of stakeholders. Therefore, considering that, according to Art. 7 of
the Directive 2007/60/EC, FRMPs have to include measures for flood risk reduction, taking also into
account ‘relevant aspects such as costs and benefits’, it is evident that the above-mentioned methods
are not sufficient to comply with these prescriptions. Moreover, the end-users of flood risk analysis
from different sectors (e.g. insurance industry, spatial planners, emergency planners, river basin
managers, taxpayers) may have specific requirements in terms of the types of results and, as a conse-
quence, the methodologies preferred for calculation. Hence, the FloodRisk plug-in addresses differ-
ent target groups and objectives utilizing a cost–benefit approach.

Considering that FloodRisk seeks to translate all relevant considerations into monetary terms and
can therefore select the most efficient project from a portfolio of alternatives, it can serve national
and regional governments. The latter are among the main target groups with a high interest in
reducing risk and allocating budgets to flood risk mitigation options. Moreover, FloodRisk can be
used by all the other stakeholders that may want to consider (as much as possible) all benefits and
costs of alternative courses of action, and therefore, ex-ante cost assessments of the current risk situ-
ation and of future scenarios are required. Particularly, for the spatial planner, cost assessment
results must be displayed in risk maps in order to show the spatial distribution of risk and depict
areas which suffer the most. Following an event, the emergency planners of the affected nation or
region are usually interested in the amount of overall damages that occurred, in order to compensate
losses or effectively support recovery. Therefore, the quick but robust quantitative damage estimates
that can be performed by FloodRisk would be helpful.

Insurance companies are also interested in cost assessment figures. Insurance companies
mainly need cost assessments to calculate individual insurance premiums, which require more
detailed, object-specific ex-ante cost assessments and, of course, ex-post cost assessments for
compensation payments. As insurance companies often have to compensate depreciated costs,
they frequently adopt the depreciated value of assets in such a case in cost assessments on, while
planners’ cost assessments are usually based on the full replacement time value of assets. More-
over, private companies or private homeowners may also be a target FloodRisk user group for
cost assessment studies as they are likely interested in the potential risk to their property due to
natural hazards, in order to decide on private precautionary measures or whether or not to
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insure. Finally, taxpayers may be interested to know how flood risk decisions produce costs or
achieve benefits for the community (Figure 1).

The FloodRisk plug-in vision follows the emerging FRM paradigm, which is not unaware of pre-
vention in the classical sense, nor the need to better manage emergencies, but is also open to com-
plex actions regarding preparation for critical events, prior information, public involvement and
economic representatives, leading to more extensive risk awareness in an operative manner.

The FloodRisk plug-in implementation

The design and implementation of this tool is described, placing particular focus on the characteris-
tics that could make it suitable for establishing robust, modular, flexible, repeatable and multiple-
use case approaches for calculating and communicating flood risk worldwide.

QGIS and its plug-in mechanism

The authors have chosen to integrate the FloodRiskmodel in a free and open-source desktop GIS i.e.
QGIS (www.qgis.org), taking into account its quality and current worldwide diffusion, and there-
fore, its potential in disseminating the results of the proposed project. QGIS is a mapping software
that is installed on and runs on a personal computer and allows users to display, query, update, and
analyze data about geographic locations and the information linked to those locations (Steiniger
and Bocher 2009). QGIS is a volunteer-led development project licensed under the GNU General
Public License; it was started by Sherman in 2002. The project was incubated with the Open Source
Geospatial Foundation (OSGeo) in 2007. The original aim was to provide a fast and easy-to-use geo-
graphic data viewer for GRASS GIS (Neteler et al. 2012). Progressively, QGIS has extended its func-
tionality beyond data viewing through the development and integration of a series of customized
and external algorithms through a plug-in mechanism. QGIS, indeed, has been designed with plug-
in architecture and, therefore, can easily integrate several external functionalities in its platform.
Moreover, this plug-in architecture provides access to QGIS core applications for developers while
maintaining independent development paths. This simple and efficient mechanism allows the
embedding of an external algorithm library into the system by putting it into specific folders (i.e.
PLUGIN_PATH). QGIS has become a high-quality cutting-edge GIS in addition to representing a
collaborative development model and supporting the free spread of knowledge. It has a growing
developer base and the software itself, as well as the development process, is well documented.
Hence, the main advantage of QGIS relies on the ease and rapidity of developing new plug-ins using
Python language (www.python.org). Python has many advantages because it is released with an
open-source license and has an extensive set of scientific libraries that make it an attractive environ-
ment for interactive development between scientists and IT developers.

Architecture

Until recently, geospatial software was characterized by monolithic applications that contained all
the code necessary to deal with user interface, data processing and database communication. Mono-
lithic software production is more expensive than splitting monolithic applications into multiple
parts; each part is a component of the overall system and performs a specific function, and therefore,
the single components can be reused in several applications, thus saving money.

The FloodRisk conceptual design clearly follows the design philosophy of having an
object-oriented framework that deconstructs the risk analysis calculation into its component set of
connectable pieces, which can then be assembled into applications of substantial complexity. Several
free and open-source technologies and approaches have been used in FloodRisk plug-in implementa-
tion, and the source code has been implemented in the Python language.
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We have used Python as the core of our framework because it is an interpreted language that pro-
vides the flexibility, interactivity and extensibility needed for serving as a ‘glue’ to tie modules and
components together, rapidly creating customized applications. Python’s syntax emphasizes support
for a common programming methodology and promotes code readability, and, thus, maintainabil-
ity. Python has become one of the key languages used in most parts of GIS add-on development, in
part due to its integration with the well-known GDAL/OGR library for GIS data elaborations.
GDAL/OGR (Geospatial Data Abstraction Library) is an open-source cross-platform C++ translator
library for raster and vector geospatial data formats (www.gdal.org). GDAL supports over 50 raster
formats, and OGR over 20 vector formats. Indeed, GDAL/OGR is used in the FloodRisk plug-in as
the basis for much of the data access and processing. Furthermore, the FloodRisk plug-in uses the
numeric extension, NumPy, to allow for the efficient storage and manipulation of large amounts of
numerical data, such as GIS raster data, thus limiting the operation computational time. NumPy
(www.numpy.org) is one of the main packages utilized in scientific computing with Python lan-
guage. Among several functionalities of Numpy, we highlight the following characteristics:

� Powerful N-dimensional array object;
� Sophisticated (broadcasting) functions;
� Tools for integrating C/C++ and Fortran code;
� Useful linear algebra, Fourier transforms, and random number capabilities.

Moreover, FloodRisk uses SQlite, an open-source relational DBMS, and SpatiaLite, an extension
of SQLite to support fully fledged Spatial SQL capabilities to store the geographic and alphanumeric
input data (Swain et al. 2015). A database management system allows users to define, create and
maintain a database, and provides controlled access to the data. The DBMS has a number of advan-
tages as compared to the traditional computer file processing approach, such as controlling data
redundancy, data consistency, data integration and integrity constraints. For example, DBMS stores
all the data and their relations into a single database, avoiding data duplication in several paths.
Finally, FloodRisk software is completely integrated in QGIS through its plug-in architecture. There-
fore, it inherits several QGIS advantages, such as interoperability, portability, diffusion, modularity,
and flexibility. The essential requirement for building plug-ins is to utilize the predefined interface

Figure 1. Highlights of the FloodRisk plug-in vision.
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provided by the system. A QGIS plug-in interface consists of several Python instructions that can be
generated automatically from the external plugin, called ‘Plugin Builder’. This builds an easy QGIS
plug-in structure, generating a simple template plug-in that can be used as a starting point for cus-
tomized plug-in development. Based on this simple architectural structure generated by the Plug-in
Builder tool, FloodRisk structures (Figure 2) comprise 21 classes: 1 class (floodrisk.py) for the general
toolbar where all the buttons are named; 7 classes (Ui_name.py) that are integrated with the Graphi-
cal User Interface (GUI) module; and another group of 13 classes (Name.py) that are integrated with
the Core module.

Graphical user interface (GUI)

The FloodRisk plug-in GUI has been developed through the QGIS GUI standard library Qt (http://
www.qt.io/). Thanks to Qt is useful for translation into several languages (this first version of Flood-
Risk is available only in English and Italian). The FloodRisk GUI is completely integrated in the
main QGIS user interface. In particular, the FloodRisk GUI is composed of five main forms
(Figure 2), including the ‘Help’. These forms allow the user to (i) guide the user to fill the database
with their own data, to (ii) create or change FloodRisk project files and to perform risk analysis, i.e.
(iii) flood economic damages evaluation and (iv) loss of life estimation. The developed toolbar
(Figure 3) allows activation of the main forms. Moreover, FloodRisk contains several other GUI
forms (accessible from the main forms) in order to depict input and output data as charts, tables
and maps. The GUI functionalities are described in detail in the user manual at https://github.com/
FloodRiskGroup/FloodRisk-doc/blob/master/FloodRiskUserManual.

Figure 2. GUI components.
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Portability and availability

FloodRisk uses libraries available in the QGIS core and in default QGIS Python installation. There-
fore, it has the same aforementioned portability and interoperability advantages as QGIS (e.g. Flood-
Risk is a cross-platform program, and it has been tested in Windows, Linux and Mac). The
FloodRisk source code is licensed under the GNU Public License (GPL) version 2 and is shared
through Github at https://github.com/FloodRiskGroup/floodrisk together with a set of benchmark
data downloadable at https://github.com/FloodRiskGroup/FloodRisk-doc.

Moreover, the FloodRisk tool is available via the QGIS plug-in installer, provided by the
QGIS official repository. Detailed FloodRisk installation and application help is available in the
user manual at https://github.com/FloodRiskGroup/FloodRisk-doc/blob/master/FloodRiskUser
Manual.

The FloodRiskmethodological framework

The conceptual framework, adopted by FloodRisk, to estimate the expected damages per year is dis-
played in Figure 4. The FloodRisk framework is based on hazard modelling with different return
time periods, as inputs, in order to reconstruct the socio-economic damages. Moreover, through
combining the flood inundation maps with exposure and vulnerability information, potential dam-
age is calculated: with flood damages corresponding to different probabilities, an exceedance

Figure 3. FloodRisk toolbar.

Figure 4. Symbolic scheme of the flood risk assessment framework.
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probability loss (EPL) curve can be constructed, from which the expected annual damage (EAD) can
be calculated. Finally, different flood risk measures can be implemented in the damage model in
order to calculate their effectiveness in reducing flood risk.

With respect to vulnerability assessment, the FloodRisk plug-in follows a standard approach, pro-
posed by Sayers et al. (2014), that reflects both the potential for a given receptor to experience harm
should it be flooded and the quantification of the number of properties or people that may be
exposed to a given flood event should it occur. Therefore, the flood risk is evaluated by the combina-
tion of the receptors exposed to the hazard and the susceptibility, value and resilience of these recep-
tors. The susceptibility describes the propensity of a particular receptor to experience harm during a
given flood event. The standard approach, utilized in FloodRisk, to define the susceptibility of ele-
ments at risk and to estimate direct flood damages is the use of damage (or susceptibility) functions
(Smith 1994). These functions define, for the respective elements at risk, the relationship between
hazard and exposure characteristics and the damage that can be expected under the given circum-
stances (Merz et al., 2010). The value is used to express the degree of harm to a receptor, and can be
expressed in monetary terms, as maximum asset value, or by intangible impacts (e.g. number of peo-
ple who died) (Meyer et al., 2013). Moreover, the quantification of damages depends on the aims of
the flood risk analysis. While public governments require assessments of the total costs to the econ-
omy and/or society, insurance companies’ interests lie mainly in assessing their insured losses. For
example, the land-use or building damages may be monetized as replacement costs (i.e. the esti-
mated new value of the object or class), or depreciated/repair costs (i.e. an estimate of the present-
day cost of replacement or reparation). Finally, the resilience describes the ability of the receptor
that has been harmed to recover from the flood event and/or adapt to a change in conditions that
may have occurred in a timely and efficient manner. The resilience could include structural (e.g.
dam, levees) and non-structural interventions (knowledge and reliability).

The FloodRisk engine workflow

FloodRisk is composed of two main calculation workflows capable of computing economic direct
damages and loss of life. In the GIS-based system FloodRisk, first, the elements (e.g. land-use maps
or building maps, infrastructure such as road networks, railroads, and census blocks) actually at risk
from flooding are recognized. The identification of assets at risk is established by overlaying object
or land-use data and population census data with flood extent maps, quantitatively identifying the
respective values of the exposed elements to derive damage estimates of the exposed assets. Then,
the susceptibility can be defined by users utilizing the vulnerability curves and, therefore, the dam-
ages estimated.

Moreover, flood mitigation measures (e.g. levees or early warning) are also important resilience
parameters. For example, precautionary measures as important damage-influencing variables can be
taken into account for the evaluation and development of effective risk mitigation strategies. Hence,
according to the above-described approach, the FloodRisk plug-in permits the acquisition of several
output results: the evaluation of structural and direct economic damages (Figure 5), and the estima-
tion of the population at risk (PAR) and loss of life (Figure 6). These results are shown in the form
of tables, charts (i.e. histograms) and maps. The use of maps to visualize outputs could improve
stakeholders’ knowledge of spatio-temporal features of a flood risk area. Any system is spatially dis-
tributed and the way in which it is distributed can have significant effects on when a flood event will
occur. Therefore, flood damage maps are useful to decision-makers in understanding where flood
risk hotspots are, and for identifying the strategies most likely to limit the risk in those areas in order
to support decision-making and improve knowledge of risk assessment and management.

With regard to indirect costs, this version of the FloodRisk plug-in does not account for them
because the potential transfer of these methods to practitioners and stakeholders is quite unrealistic
(Green et al. 2011). Despite the efforts of different authors to account for indirect impacts (Albano
et al. 2013, 2014; Karagiorgos et al. 2016), there is a need for a better understanding of the processes
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Figure 5. Example of economic damage results: the map shows the damages as a ratio of the total asset value in %, as expressed
on the legend, reported in the table of contents (TOC), that uses a colour scale to highlight the degree of damage of the different
elements at risk (e.g. dark red represents zones that could be potentially more damaged and, thus, more critical); the graph sum-
marizes, in the form of a histogram, the economic damage for each land-use category. Moreover, all the results data can be visual-
ized and exported in the form of a table (see user manual at https://github.com/FloodRiskGroup/FloodRisk-doc/tree/master/
FloodRiskUserManual for more information).

Figure 6. Example of human losses results: the map shows the density of the population at risk in the different areas as inhabi-
tants/km2 as expressed on the legend that uses a colour scale to highlight the degree of population at risk in different areas (e.g.
dark red represents the zones in which the flood events could potentially affect more people); the graph summarizes, in the form
of a histogram, the estimated loss of life divided on the basis of flood water depth range. Moreover, all the results data can be visu-
alized and exported in the form of a table (see user manual at https://github.com/FloodRiskGroup/FloodRisk-doc/tree/master/
FloodRiskUserManual for more information).
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leading to damage that requires a high degree of skill to run and entails complex mechanisms and
uncertainties.

Economic damages calculator

For tangible damage, the FloodRisk procedure holds true for relative damage functions that express
damages as a ratio of the total asset value (0 = no damage to 1 = total destruction). These damage
functions can be represented as depth–damage curves that combine the type of land-use and the
inundation depth but other hazard parameters can also be taken into account, e.g. flow velocity, to
consider the different nature of the forcing event (e.g. flash flood instead of river flood) for which
risk quantification is performed (Figure 5).

Once flood damages were calculated for the flood events with several return times, the EAD was
determined as follows:

EAD ¼
XN

i¼1

DPi�Di ; (1)

where DPi and Di are, respectively, the exceedance probability increment and average damage of two
events with exceedance probabilities Pi and Piþ1.

Social damages calculator

For human losses calculation, the FloodRisk engine combines population exposed to the flood
(i.e. population at risk) and fatality rates related to the characteristics of the flood (i.e. flood severity)
to estimate loss of life (Figure 6). The FloodRisk plug-in utilizes several parsimonious methods and
generally available contributing factors to evaluate the ‘fatality rate’ (Graham, 1999), which is
defined as the number of fatalities divided by the number of people exposed, or the PAR. These con-
tributing factors include hazard factors (e.g. water depth and water velocity), general preparedness of
the society (e.g. existence of public education on flood risk, warning and communication systems,
coordination between emergency agencies and authorities, and time of day), warning factors
(e.g. warning time) (DHS 2011) and an additional parameter (e.g. degree of readiness of population)
(Escuder-Bueno et al., 2012). The latter concerns the existence of public education on flood risk,
warning and communication systems, and coordination between emergency agencies and authori-
ties (Albano et al. 2014). These factors should also be estimated through a complete understanding
of the characteristics of the local communities such as flood risk perception of the inhabitants and
fear and trust in decision-makers (Bodoque et al. 2016). Once loss of life has been calculated for sev-
eral flood events with different return times, the expected annual loss of life can be determined.

Risk assessment for cost–benefit analysis

Therefore, as said above, by combining expected damages and exceedance probabilities of the flood-
ing scenarios, it was possible to obtain data not only the localization of risk area, but also on risk
quantification in monetary terms. Thanks to these different calculators, the FloodRisk tool can be
useful for decision-making in the context of cost–benefit analysis of flood mitigation measures
(‘benefit’ is determined by the difference between current expected losses and residual ones that
may continue to occur even after the implementation of the interventions). The F–D and F–N
curves can be utilized to capture the impact of structural and non-structural measures on flood con-
sequence reduction. As shown in the following section, a compact and simplified representation of
the estimated level of economic damages is the F–D curve that presents the annual exceedance prob-
ability and estimated economic damages (the area under this curve represents economic risk).
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Instead, the F–N curve presents the cumulative annual exceedance probability of the expected esti-
mated level of potential fatalities and the area under the curve corresponds to total societal risk.

How the FloodRisk plug-in can support stakeholders in their compliance with FRM: a
benchmark case study

Different decisions must be made by different stakeholders at different points in the FRM process;
decisions may be about what action to take against the risk of flood, how to respond in the event of
a flood, or the best means of recovery from a flood. These decisions are clearly interlinked; deciding
what action to take against the risk of a flood depends upon understanding what will be the conse-
quences of a flood and the best approach to recovering from a flood. In this context, the flood risk
analysis, performed here, can provide information as to some of the consequences of adopting dif-
ferent courses of action, and to do so in a way that responds to the nature of the task with which
stakeholders are faced.

In this context, we present a benchmark example case study that represents flooding of a closer
town located 4 km downstream of a dam (the name and geographical location of the town is not
explicitly provided as in Seda-Sanabria et al. (2013)). A simplified scheme of the location of the
urban area is shown in Figure 7. In particular, this example uses a high-resolution impact assessment
framework based on MIKE FLOOD 2D inundation modelling, distributed by the Danish Hydraulic
Institute (DHI), with different return periods (Sole et al. 2013), in order to reconstruct – through
the framework presented above in this section – the economic damage and population affected by a
flood event (Figures 5 and 6). The data used in the illustrative example (e.g. water depth maps, flow
velocity maps, land-use maps, census block maps, warning time maps) are well described in the user
manual at https://github.com/FloodRiskGroup/FloodRisk-doc/tree/master/FloodRiskUserManual
and are available and downloadable at https://github.com/FloodRiskGroup/FloodRisk-doc. The haz-
ard input data of the FloodRisk plug-in can be estimated with one of the standard hydraulic models
on the market (e.g. MIKE FLOOD, developed by the Danish Hydraulic Institute; Telemac2D, devel-
oped by the National Hydraulics and Environment Laboratory of the Research and Development
Directorate of the French Electricity Board; and CCHE2D, developed by the National Center for
Computational Hydroscience and the School of Engineering of the University of Mississippi).

Figure 7. Overall scheme of the urban area downstream of the dam.
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Hazard mapping is beyond the scope of the paper and, therefore, for detailed information linked
to the presented example, we refer to Mancusi et al. (2013). A 2D hydraulic model is sufficient for
this type of modelling considering that 3D models are still expensive to run and more attractive for
fast flow in transitory regimes, especially for those applications with severe discontinuities in the
fluid (Amicarelli et al. 2015; Albano et al. 2016).

The analysis utilizes a cost–benefit approach for showing how structural (e.g. a dam) and non-
structural (e.g. warning system, risk communication, public education on flood risk, and so on)
measures can considerably decrease the cost of floods for households. In particular, it includes five
different alternatives: (1) the base case (BC) (i.e. the situation without dams or any non-structural
measures (Scenario 0: BC)); (2) the situation with only structural measures (e.g. a small dam
(DAM) (Scenario 1: DAM)); (3) the situation with only non-structural measures whose creation
does not involve the active engagement of citizens (i.e. warning systems (WS) and coordination
between emergency agencies and authorities (CO) (Scenario 2: BC+WSCO)); (4) the situation with
‘flood-proof’ citizens, i.e. informed and prepared for a flood event (i.e. several non-structural
measures, such as the combination of public education on flood risk (EP), warning systems (WS),
risk communication (CM), and coordination between emergency agencies and authorities (CO)
(Scenario 3: BC+WSCOEPCM)); and finally, (5) the combination of all the above-described struc-
tural and non-structural measures (Scenario 4: DAM+WSCOEPCM).

The results are shown in the form of a simple and informative graph, called the F–N curve
(Escuder-Bueno et al. 2012; Albano et al. 2017b). It represents the annual cumulative exceedance
probability of a certain level of consequences, in terms of potential fatalities (Figure 8). These curves
are a useful way of presenting risk information that can be used by managers and system designers
to help decision-making about risk (IEC/FDIS 31010 2009), and they are appropriate for compari-
son of risks from different situations when sufficient data is available, such as the comparison
between the situation with and without a number of structural and non-structural measures. The
results of the F–N curve integrated in cost–benefit processes aim at reconstructing or creating

Figure 8. Example of risk information based on comparison of F–N curves for an idealized case study.
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information, in a reasoned, consistent and orderly way, that can be useful to an actor taking part in a
decision process.

As shown in Figure 8, compared with the ‘Scenario 0: BC’ do-nothing option, the so-called ‘resid-
ual’ loss pattern and magnitude typically differ considerably between mitigation options. The first
distinction is a physical intervention designed to keep water out, which, in a more severe flood,
design standard or level will fail, resulting in losses typically greater than would have occurred with-
out mitigation in a flood of the same magnitude/return period (the vertical sections of the lines) in
Figure 8. Moreover, dam structures retain water and prolong flooding after having failed (the hori-
zontal sections of the lines) in Figure 8. Therefore, flood events, which include potential failure of
flood defense infrastructure, show higher n values than non-failure flood events, but are associated
with lower probabilities (‘low probability-high consequence’ flood events).

The structural measures, if these do not fail due to overdesign floods, continue to mitigate flood
impacts, even in extreme events, and effectively shift the loss–probability curve left. In addition to
the structural mitigation strategy, we show that the combination of several non-structural actions
could further reduce potential loss of life, and limit the risk increase that would occur without their
implementation. Finally, our results show that the combination of structural and non-structural
strategies is the most powerful in reducing the overall risk. For example, it is estimated by calculating
the difference in the areas under the curves of the different scenarios, that for the considered flood
events (i.e. return times (Rt) equal to 25, 100, 500, 1000, 10,000 years) the potential benefit of these
measures is about 3 lives/year. The results of the evaluation of the different scenarios analyzed are
reported in Table 1. Since non-structural measures are usually easier and less expensive to imple-
ment than structural measures, they are a particularly accessible way to reduce risk. However, there
are large geographical differences in the effectiveness of these mitigation measures, in particular, in
case of limited financial resources available.

The impact of different measures on the magnitude and frequency of consequences is strongly
related to the socio-economic and environmental context. These results, together with economic
direct damages assessment, are able to support decision-making regarding the prioritization of risk
prevention measures (in order to optimize investments), and the evaluation of different mitigation
actions and insurance agencies (in order to improve the estimation of risk-based premiums for
diverse spatial areas) on the basis of increased understanding of expected compensation payments.
Moreover, these kinds of analyses can support engineers and companies working on site-specific
flood prevention, and eventually, in post-event damages assessment (for example, to obtain infor-
mation from simulated scenarios before data collection).

FloodRisk sensitivity analysis

The estimation of total costs due to flooding, considering also their distribution within the territory,
reflects context- and event-specific characteristics, such as extent and type of flood event (e.g. flash
flood, river flood, dam-break event, etc.), spatial variability and quantity of exposed elements,

Table 1. Results of the estimation of loss of life (LOL) for the selected case study and the five chosen scenarios.

LOL

Rt (year) BC DAM BC+WSCO BC+WSCOEPCM DAM+WSCOEPCM

25 3.17 3.1 1.8 1.74 1.69
100 3.6 3.35 2.25 1.88 1.73
500 5.36 4 2.56 2.1 1.79
1000 7.67 517 2.78 2.26 1.83
10,000 18.42 13.3 3.87 3.1 2.21
10,000+dam-break – 5963 – – 82.86

Note: Rt = return time (years); LOL = loss of life; BC = base case (i.e. without dam); DAM = scenario with dam; EP = public edu-
cation on flood risk; WS = warning systems; CM = risk communication; CO = coordination between emergency agencies and
authorities.
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resolution and type of input data, cultural or geographical differences, and so on. Hence, increased
effort should be devoted to analyze the sensitivity of risk model parameters in order to integrate and
reduce uncertainties in decision-making processes in order to allow decision-makers and stakehold-
ers to make more informed and better decisions (Albano et al. 2017a; Inam et al. 2017c).

For the purposes of this study, we consider hazards as inputs and neglect hazard-related uncer-
tainties; these are usually associated with the selection of the appropriate model parameterization,
the consideration of dikes and dike breaches, and the calibration and validation of models (de Moel
et al. 2015). When deterministic simulation models are applied to anticipate the effects of manage-
ment actions and thus support decision-making, sensitivity analysis is a recommended practice to
assess the robustness of the assessment (and thus of the final decision) with respect to uncertain
model inputs or assumptions. Therefore, a sensitivity analysis of the FloodRisk plug-in is examined
in this section to study the response of vulnerability parameters to flood damage assessments.

The FloodRisk plug-in framework is based on the unit loss method (Wagenaar et al. 2016), and
therefore, the parameters that have the power to highly affect the results are object data, maximum
damage figures and damage functions. Moreover, the FloodRisk plug-in permits the use of an
object-based approach – which uses a large number of object types – such as a buildings map or
land-use approach (i.e. aggregated surface area-based models, where the exposure data input is in
the form of a land-use map). Therefore, the FloodRisk plug-in is able to serve multiple scales and
data types on the basis of the study limiting the correlated aleatory uncertainties, i.e. inherent ran-
domness and natural variability. Therefore, the sensitivity analysis described here focuses on maxi-
mum damage figures/values and the damage functions utilized.

In this context, we tried to combine information from different damage functions with maximum
damage values among European countries (described in Table 2) to get a better assessment of model
sensitivities in tangible direct damage outcomes due to a dam-break event (the geospatial data used
are described in the user manual at https://github.com/FloodRiskGroup/FloodRisk-doc/tree/master/
FloodRiskUserManual and are available at https://github.com/FloodRiskGroup/FloodRisk-doc). We
used vulnerability parameters of seven countries collected and harmonized by the European Joint
Research Center (JRC) (Huizinga 2007). Since it is generally not possible to assess damages on the
basis of individual objects due to a lack of available data and resources, similar units or elements at
risk are usually pooled together and classified as a single group. Therefore, the land-use classification
is based on economic sectors, as is often the case in such models. This is based on the understanding
that different economic sectors (e.g. industries, residential, commercial, agricultural and roads) show
different characteristics concerning assets and susceptibility. The damage function in Huizinga
(2007), of which Figure 9 shows an example, combines the type of land-use and the inundation
depth (i.e. depth–damage curves). The outcome of the functions can be the absolute monetary loss
(i.e. the expected damages are directly estimated in monetary terms), or relative loss functions (i.e.
the loss is given as a percentage of the maximum asset value). These functions have been constructed
for damage categories that contribute most to damage and that account for more than 80% of total
damage (Huizinga 2007). For example, residential homes, industry, roads and – for the sake of cov-
erage – agricultural areas are taken into account by the JRC study. Moreover, the definitions of

Table 2. Maximum damage values per damage category (Huizinga 2007).

Maximum damage value (Euro/m2)

Country Residential buildings Commerce Industry Roads Agriculture

Belgium 716 592 509 23 0.73
Czech Republic 432 358 308 14 0.44
Germany 666 551 474 21 0.68
Netherlands 747 619 532 24 0.77
Norway 944 781 672 30 0.97
Switzerland 829 686 590 27 0.85
UK 707 586 504 23 0.73
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maximum damages and damage functions are aligned to make a fair comparison between European
countries. The available regional values for standardized Gross Domestic Product per capita on pur-
chasing power standards are used for this purpose, as in Huizinga 2007.

Moreover, the FloodRisk database is organized to include parameters such as water velocity, flood
duration and contamination. However, it is difficult to include the large number of parameters that
may influence flood damage when constructing damage functions. Therefore, only the water depth

Figure 9. Depth–damage functions and corresponding maximum damage figures for the land-use class called ‘Residential build-
ings’ in the seven countries with collected literature by Huizinga (2007).

Figure 10. Depth–damage curve visualization through FloodRisk GUI.
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is used (Figure 10), as there is no standard and reliable procedure to assess quantitative individual
and combined effects of these parameters on damages.

Hence, in this study, we calculated risk based on vulnerability curves, and maximum values
derived from the study of the European Joint Research Centre (JRC) conducted by Huizinga (2007)
(see Table 3 and Figure 11). We then compared the results of depth–damage curves and maximum
damage values from JRC with the results by defining hypothetical average maximum values and
hypothetical average depth–damage curves, taken from Huizinga (2007). This average value of the
vulnerability parameters is taken as a source for the measure of susceptibility to flooding. The
advantage of this is that a realistic combination of inputs will be sampled. This procedure generally
prevents higher damages being sampled at small water depths than at large water depths, or func-
tions with different implicit assumptions being merged.

The variation in sensitivity of damage estimates is, therefore, not analyzed between specific sec-
tors (e.g. industries, residential, agricultural, and so on). Moreover, this sensitivity of the damage
estimates, addressed as the amount of total damages assessed, has a complete vision of the sensitivity
behaviour of the chosen vulnerability parameters (i.e. depth–damage curves and maximum asset
values). These are expressed with the coefficient of variation (CV), the standard deviation of the
damage divided by the mean of the damage, which has no unit and is therefore independent of the
size of the flood event.

Coefficient of variation is identified, first, by using average depth–damage functions and country-
specific maximum damage. We have previously used UK and Czech Republic depth–damage curves
to evaluate (in Table 3) the maximum and the minimum possible outcomes, respectively. We
obtained maximum values of 24%, making the relative variability 2.4. Then, we used the average
maximum values among countries with country-specific depth–damage functions, obtaining a value
of 65% (i.e. the relative variability is 6.5).

The quantitative results show that the model results are very sensitive to uncertainty in both the
depth–damage curve and maximum value, whereby the first has a larger effect than the latter. Thus,
care needs to be taken when using aggregated land-use data for flood risk assessment because the
depth–damage functions are strongly influenced by the different characteristics concerning assets of
different countries, and it is essential to adjust asset values to the regional economic situation and
property characteristics. Indeed, the high degree of variation among specific countries’ parameters

Table 3. Results of model runs for individual land-use classes.

Modelled damages (€millions)Land-
use
Code

Land-use
Label

Inundated
area
(kmq)

Belgium Czech
Republic

UK Germany Netherlands Norway Switzerland

111 Residential buildings 17.4 2971.9 1688.2 8408.2 1945.9 1556.6 6104.1 4208.4
120 Industry 0.9 355.2 31.5 308.8 76.3 97.5 205.9 279.6
121 Commerce 1.4 275.0 41.1 386.8 44.7 126.4 257.5 367.8
122 Roads 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.3
134 Agriculture 11.7 5.5 4.6 6.8 2.0 5.3 4.6 3.8

Total damage 3607.9 1765.7 9110.8 2069.3 1786.0 6572.7 4859.9

Figure 11. Magnitude of estimated damages computed by different country-specific vulnerability functions, and the correspond-
ing breakdown into individual land-use classes. The corresponding numbers can be found in Table 3. Note: damages to roads and
agriculture are not displayed because they only play a minor role in total damages estimation.
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may be due to the shape of the functions and the data (i.e. synthetic or empirical) used in their con-
struction, the use of depreciative value or replacement value, and the inclusion of indirect costs in
the damage estimates.

Discussion

The proposed software supports the transparent production of complete event scenarios that can be
used for different types of analyses reflecting and serving the needs of a wide spectrum of users. The
adoption of a collaborative and open-source geospatial model for flood loss estimation, due to pres-
ent and future flood events, has been showed as crucial for allowing stakeholders to respond in a
simple, dynamic and transparent way to ‘what-if’ questions, such as ‘what benefits do we get with a
dam or a forecasting system?’.

The flexibility and modularity of FloodRisk can allow its use in different cases and in different
geographic regions. However, as highlighted in the sensitivity analysis, the application of the pro-
posed software to other territorial contexts requires a critical consideration of vulnerability input
within the risk assessment process, and could be supported by an increase in the quality of damage
data and data on elements at risk, as well as the degree of detail. This can be done, for example, by
continuously recording the consequences of natural processes on the built environment.

The sensitivity of the model parameters to local characteristics of the analyzed area has
highlighted the need of decision-makers to be aware of the limitation accuracy of risk analysis
outcomes. Indeed, there is a demand for a better understanding of the reliability and uncertainties
related to flood risk estimates. Therefore, future studies should address the integration of uncer-
tainty quantification in the proposed model and its communication to end-users.

FloodRisk is a first step to allow for the creation of an open system through data sharing and can
promote a transparent communication and accountability process through which a range of actors
can participate. Moreover, stakeholder engagement and active participation can increase the legiti-
macy of decision-making processes as well as their acceptance. In this light, one of the planned
applications of the model is – after having performed a calibration on an observed and well-moni-
tored past event – to assess the relative change in future (compared to present) flood damages and
risk under scenarios of change in both physical and socio-economic conditions (e.g. climate change,
land subsidence, land-use change, population increase, increase in asset values, etc.), taking into
account the rights of individuals and society that must be protected, and the right to have the inter-
ests of all treated with fairness (i.e. tolerability standard).

Conclusion

In this paper, an open-source software capable of computing flood risk assessment, with a focus on
flood consequences analysis, was presented. At present, FloodRisk is composed of two main calcula-
tion workflows capable of computing economic direct damages and loss of life, supported by several
GUI forms for data storing, management and visualization. The various outputs can be used mainly
to carry out flood risk reduction or mitigation measures, such as pre- and post-flood planning and
management, to identify regions with higher flood risk losses within a certain country in order to
prioritize mitigation actions – hence, utilizing limited resources efficiently and fairly and reducing
risk – and finally, to increase capacity for the recovery phase. The paper highlights, through an
example application, how the FloodRisk tool can support operatively diverse stakeholders serving
different purposes and applications by showing how the strategies examined in this paper can signif-
icantly reduce flood risk. These strategies are diverse and include the use of structural measures,
such as dams, and a combination of non-structural measures (e.g. flood-proofing measures). Further
research should address how to stimulate discussion on the benefits of implementing and encourag-
ing the use of these strategies.
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Moreover, this free and open-source tool can promote transparent communication and guided
learning for better decision-making in FRM. Due to its interoperable, modular, cross-platform and
QGIS-based development philosophy, the implementation of FloodRisk can advance, due to its
community-based approach where anyone can contribute with their own methods and formulae,
test the platform, or translate its GUI into different languages. This differs from traditional practices
in FRM, where a closed group of developers and enterprises makes all the decisions.

This can be understood as a starting point towards a more long-term perspective that emphasizes
the integration of cost assessment into a wider SD framework. It is a step towards a more iterative
understanding of decision-making that focuses on learning and revision, and at the same time, not
only allows for, but requires, stakeholder engagement.
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